
28/08/2012

1

ITI 1120
Lab #6

Library Classes and JUnit Testing

Daniel Amyot, Diana Inkpen, Alan
Williams

Agenda

• Topics in this lab:

– Methods

– Library classes

– Testing with JUnit

• In this lab, you are going to create your own
library class, and then learn how to create and run
tests on the methods in your class.

28/08/2012

2

A library class

• Create a class called MyMath, that implements
the following methods, WITHOUT using the Math
class from the Java software development kit.

1. A method that returns the absolute value of an
integer x.

2. A method that calculates xy for integers x and y.
• Use a loop the multiplies x by itself y times.
• Assume y ≥ 0

• No reading from the keyboard or printing to the
screen!

The absolute value algorithm

GIVENS: x (an integer)

RESULT: absX (the absolute value of x)

HEADER: absX abs(X)

BODY:

x 0

absX – X absX X

false true

28/08/2012

3

The exponentiation algorithm

GIVENS: x, y (two integers)

RESULT: xToy (the value of xy)

INTERMEDIATES: count (counts times x has been

 multiplied by itself)

HEADER: xToy pow(x, y)

BODY:

count ≤ y

xToy xToy x

count count + 1

false true

xToy 1

count 1

Interacting with the Library Class

• Once you have successfully compiled your class, you can invoke
the methods from other methods, including main() located in
another class (where you may interact with the user).

•It is easier to call the methods
created using the interaction
window provided by Dr Java. Do
not forget to specify the name of
the class first:

•E.g., MyMath.abs(-8)

•Try a few calls!
•You can do the same with Java
classes:

•E.g., Math.random()

28/08/2012

4

Testing

• We’re now going to do some testing of the
methods in the class MyMath.

• When doing testing:
1. Call a method with some test values as the

parameters.
2. Observe the results.
3. See if the results are as expected.

• This means that you need to choose some test

values for which you can determine the expected
results using some other means.

Manual Testing

• Try testing your class by running the main method and
typing various values for x and y.
– Choose your values carefully, to try and take different

paths through the code.

• For the absolute value method:
– try values of x that are less than zero, equal to zero,

and greater than zero.

• For the exponentiation method:
– try y = 0, y = 1, y > 1
– try x < 0, x = 0, x = 1, x > 1

• What are some issues encountered when using this
approach? (Especially when changing the code)

28/08/2012

5

Testing with JUnit

• The interactions in the DrJava interface are entertaining
but inefficient while we are dealing with complex methods.
Many manual tests need to be performed each time we
modify the method.

• JUnit is a set of classes that you can add to the Java
software development kit to make testing easier.

• JUnit was coined from “Java unit”.

– Unit testing is when you testing parts of a complete
application, such as methods in library classes.

• More information:

– http://junit.org

Key JUnit concepts

• Test verdict: each test case can pass (green) or fail (red).

• Test case: an experiment to see if a method produces the
correct result for a set of parameter values.

– Consists of a method contained in a test class.

– You can add as many methods as you wish in a test class.

• Test class: contains a set of test cases for a class.

– Usually, there is a corresponding test class for each class
you want to test.

28/08/2012

6

Setting up a test class

• Be sure that your MyMath class is already loaded
into Dr. Java

• In Dr. Java, from the ‘File’ menu, select “Create
new JUnit test case…”

• You will be asked for the name of the test class.
Enter MyMathTest.
– It is important to include the word “Test” as

part of the class name; this is how JUnit knows
how to find test classes.

– JUnit version 4 uses a different notation
(@Test). We will be using version 3.

• The result should look similar to the code on the
next slide.

The test class
import junit.framework.TestCase;

/**

 * A JUnit test case class.

 * Every method starting with the word "test" will be called

 * when running the test with JUnit.

 */

public class MyMathTest extends TestCase

{

 /**

 * A test method.

 * (Replace "X" with a name describing the test. You may

 * write as many "testSomething" methods in this class as

 * you wish, and each one will be called when running

 * JUnit over this class.)

 */

 public void testX()

 {

 }

}

28/08/2012

7

Features of the test class

• import junit.framework.TestCase;

– We will use the class TestCase from the JUnit collection
of classes.

• After the name of the class, there is:
 extends TestCase
– This says that the class is going to act like a test case, as

defined by JUnit.

• An empty test method, which returns a void result and has
no parameters.
– JUnit will call this method as a test case.
– The method should be renamed to testXXX where XXX

gives some idea of the purpose of the test case.

Creating a test method

• Let’s create a test for the absolute value method.

• The absolute value method takes one value as a parameter;
we need to provide test data for that parameter.

– Example: if we call abs(-4), we should get 4 as a result.

– Set up 3 values:

• testValueX: the -4 that will be the test data for
our method.

• expected: the result we expect: 4

• actual: the result that abs(-4) actually returns to
us.

28/08/2012

8

Checking the result

• An important part of testing is checking that the result you
get matches what you expect.

• The result is a verdict: pass or fail.

• With JUnit, there is a method in the Assert class called
Assert.assertEquals(expected, actual)

– If the two values expected and actual are equal, the
method will return and execution will continue.

– If the values are not equal, the test case will be declared
to have failed at this point. Execution of the test
method stops.

• If you reach the end of a test method, and no failures have
occurred, the test will be declared to have passed.

The assertEquals method

• There are several versions of the assertEquals method, so
that you can test values of various types

– The expected value is always the first parameter, and
the actual value is always the second parameter
Assert.assertEquals(int, int)

Assert.assertEquals(char, char)

Assert.assertEquals(boolean, boolean)

Assert.assertEquals(String, String)

Assert.assertEquals(double, double, double)

– Testing equality of double variables is a special case; remember
that you should compare that they are “sufficiently close” to
each other.

– The third parameter specifies the maximum difference to
accept as equal (a number like 0.00001) (Section 6 of notes
which talks about this subject).

28/08/2012

9

Enter a test method
• Replace the empty testX method with the following:

public void testAbsNegative()

 {

 // Purpose: test that abs() works for a value < 0.

 int testValueX; // Test data for calling method

 int expected; // Value we expect to see as result

 int actual; // Actual value that method returns

 //Given test value

 testValueX = -4;

 //Expected result and actual result

 expected = 4;

 actual = MyMath.abs(testValueX);

 //Verify if we have obtained expected result

 Assert.assertEquals(expected, actual);

 }

One more addition

• Add the following at the top of your test class:

import junit.framework.Assert;

• This is so we can use the assertEquals method
from the JUnit class Assert.

28/08/2012

10

Compiling the tests

• Be sure that you have both of the classes Math
and MyMath loaded into Dr. Java.

• Click the ‘Compile’ button.

• After a few seconds, the ‘Test’ button should be
enabled. (Unless there a problem arises during
compilation…)

Potential problems with DrJava

• If default installation does not work with the
following error:

Error: package junit.framework does not exist

You will need to add the junit.jar to your Java installation and
indicate where it is located in DrJava.

• Download junit.jar from the following link: (provide link)

• Find the lib folder of your Java installation (ex: C:\Program
Files\Java\jdk1.5.0_09\lib)

• Move the junit.jar file into lib folder

• Start DrJava

28/08/2012

11

Potential problems with DrJava

Edit>Preferences> Click in the zone “Extra Classpath”(It should

be located in the first tab, otherwise just select “Resource
Locations” in the left panel)> Click on Add > Add junit.jar file

located in your lib folder and click on “Apply”

Running the Tests

• Click the “Test” button.

Test
report

Test
button

Pass/
fail bar

28/08/2012

12

Results from JUnit

• JUnit always shows a coloured bar after a test
run:

– Green: all tests passed

– Red: at least one test failed.

– [JUnit slogan: “Keep the bar green to keep
the code clean !.”]

• You also get a test report that lists any failure
messages.

Adding a test that will fail

• Create a second test by adding another method to
the test class.

• This time, we deliberately want the test to fail,
just to see what happens.

– Call abs(4) and expect -4 as a result (which is
wrong!)

28/08/2012

13

Result from a test failure

The test report

MyMathTest

 testAbsNegative

 testAbsPositive

File: C:\...\MyMathTest.java [line: 39]

Failure: expected:<-4> but was:<4>

• A test name shown in green has passed; one shown in red has
failed.

• For each failure, you get
– The line number in the test case where the failure

occurred.
– A report from JUnit as to the result of the comparison

• The values are enclosed in <> in case you need to
check for extra spaces, etc.

28/08/2012

14

Try creating the following test
methods

• Absolute value

– test data: 0

– test data: >= 1

• Exponentiation:

– x > 1, x = 1, x = 0, x < 0

– y = 0, y = 1, y > 1, y odd/even when x<0

If time permits
• Add the following mathematical methods to your class MyMath and

appropriate tests in MyMathTest
– square(int n) – returns the square of n

• Create tests with n=40000 and n=50000. What do you
notice?

– round(double n) – return the integer value rounded to n.
• Assumption: the rounded value for n can be represented

with an integer between about -2 billion to + 2 billion.
• Note: Math.floor(x) returns a real number representing

an integer less then or equal to the real x:
– Math.floor(3.6) returns 3.0
– Math.floor(-3.2) returns -4.0

• Examples
– MyMath.round(3.9) gives 4
– MyMath.round(3.1) gives 3
– MyMath.round(3.5) gives 4
– MyMath.round(-1.2) gives -1
– MyMath.round(-1.5) gives -1
– MyMath.round(-1.6) gives -2

28/08/2012

15

String vs. char[]

• Similarities:

– both are collections of characters

– both indexed from 0 up to length - 1

– both are reference variables

• no == comparison!

String vs. char[]

• Differences:
– Access of single character: str.charAt(i) vs
array[i]

– Strings cannot be modified internally once they are
created

• No equivalent of array[i] = ‘x’
– String variables can be assigned constant strings where

using new is optional
String str;

str = "abc";

str = new String("def");

– Most operations on Strings are done with methods
array.length // not a method call; no ()
str.length() // method call; () required

28/08/2012

16

Conversions: String char[]

char[] array;

char[] array2;

...

// Create String from array

String str = new String(array);

// Create array from String

array2 = str.toCharArray();

Common Methods of String

• Review the various methods available in the String
class:

http://java.sun.com/javase/6/docs/api/java/lang/String.html

•charAt(…), indexOf(…), length(…)

•toCharArray(…)

•equals(…), compareTo(…)

•concat(…), substring(…),

•toLowerCase(…), toUpperCase(…)

•…

http://java.sun.com/javase/6/docs/api/java/lang/String.html

28/08/2012

17

Careful!

• For String character strings:

– Use the double quotes (")

– Do not use: “, ”, « or »

• For character arrays:

– Use the single quote (')

– Do not use: ‘ or ’

Exercises with String and char[]

• Using the Dr Java Interactions window
– Using String constants of you choice, try to call common

methods from the String class. For example:
 "012345678".length()
 "12345".charAt(4) and then “12345”.indexOf('4')
 "minuscule".toUpperCase()
 "A".compareTo("a") (et and the reverse?)
 "happy".concat(" ").concat("holidays")

 String s1="ab"; String s2="ab"; s1.equals(s2) (and s1==s2 ?)
 String s3="thanks"; char[] tabS3= s3.toCharArray(); tabS3[0]

28/08/2012

18

If you feel motivated …

• Develop and create a method countLowerCase
which counts the number of lower case characters
in a String object. Test it using the Interaction
Window.

• (More advanced) Develop and write a method
reverseUpperLower which receives a String
object as a parameter and exchanges lower case
characters to uppercase and vice versa.

